24.261.120: Berechnen Sie die Teiler der Zahl 24.261.120 (echte, unechte Teiler und die Primfaktoren)

Die Teiler der Zahl 24.261.120

1. Führen Sie die Primfaktorzerlegung der Zahl 24.261.120 durch:

Die Primfaktorzerlegung einer Zahl N = die Teilung der Zahl N in kleinere Zahlen, die Primzahlen sind. Die Zahl N ergibt sich aus der Multiplikation dieser Primzahlen.


24.261.120 = 29 × 36 × 5 × 13
24.261.120 ist keine Primzahl, sondern eine zusammengesetzte Zahl.


* Die natürlichen Zahlen, die nur durch sich selbst und 1 teilbar sind, heißen Primzahlen. Eine Primzahl hat genau zwei Teiler: 1 und sich selbst.
* Eine zusammengesetzte Zahl ist eine natürliche Zahl, die mindestens einen anderen Teiler als 1 und sich selbst hat.


2. Multiplizieren Sie die Primfaktoren der Zahl 24.261.120

Führen Sie alle verschiedenen Kombinationen (die Multiplikationen) der Primfaktoren durch, die bei der Primfaktorzerlegung der Zahl vorkommen.


Berücksichtigen Sie auch die Exponenten dieser Primfaktoren.

Fügen Sie auch 1 zur Liste der Teiler hinzu. Alle Zahlen sind durch 1 teilbar.


Alle Teiler sind unten aufgelistet - in aufsteigender Reihenfolge

Die Liste der Teiler:

weder Primzahl noch zusammengesetzte = 1
Primfaktor = 2
Primfaktor = 3
22 = 4
Primfaktor = 5
2 × 3 = 6
23 = 8
32 = 9
2 × 5 = 10
22 × 3 = 12
Primfaktor = 13
3 × 5 = 15
24 = 16
2 × 32 = 18
22 × 5 = 20
23 × 3 = 24
2 × 13 = 26
33 = 27
2 × 3 × 5 = 30
25 = 32
22 × 32 = 36
3 × 13 = 39
23 × 5 = 40
32 × 5 = 45
24 × 3 = 48
22 × 13 = 52
2 × 33 = 54
22 × 3 × 5 = 60
26 = 64
5 × 13 = 65
23 × 32 = 72
2 × 3 × 13 = 78
24 × 5 = 80
34 = 81
2 × 32 × 5 = 90
25 × 3 = 96
23 × 13 = 104
22 × 33 = 108
32 × 13 = 117
23 × 3 × 5 = 120
27 = 128
2 × 5 × 13 = 130
33 × 5 = 135
24 × 32 = 144
22 × 3 × 13 = 156
25 × 5 = 160
2 × 34 = 162
22 × 32 × 5 = 180
26 × 3 = 192
3 × 5 × 13 = 195
24 × 13 = 208
23 × 33 = 216
2 × 32 × 13 = 234
24 × 3 × 5 = 240
35 = 243
28 = 256
22 × 5 × 13 = 260
2 × 33 × 5 = 270
25 × 32 = 288
23 × 3 × 13 = 312
26 × 5 = 320
22 × 34 = 324
33 × 13 = 351
23 × 32 × 5 = 360
27 × 3 = 384
2 × 3 × 5 × 13 = 390
34 × 5 = 405
25 × 13 = 416
24 × 33 = 432
22 × 32 × 13 = 468
25 × 3 × 5 = 480
2 × 35 = 486
29 = 512
23 × 5 × 13 = 520
22 × 33 × 5 = 540
26 × 32 = 576
32 × 5 × 13 = 585
24 × 3 × 13 = 624
27 × 5 = 640
23 × 34 = 648
2 × 33 × 13 = 702
24 × 32 × 5 = 720
36 = 729
28 × 3 = 768
22 × 3 × 5 × 13 = 780
2 × 34 × 5 = 810
26 × 13 = 832
25 × 33 = 864
23 × 32 × 13 = 936
26 × 3 × 5 = 960
22 × 35 = 972
24 × 5 × 13 = 1.040
34 × 13 = 1.053
23 × 33 × 5 = 1.080
27 × 32 = 1.152
2 × 32 × 5 × 13 = 1.170
35 × 5 = 1.215
25 × 3 × 13 = 1.248
28 × 5 = 1.280
24 × 34 = 1.296
22 × 33 × 13 = 1.404
25 × 32 × 5 = 1.440
2 × 36 = 1.458
29 × 3 = 1.536
23 × 3 × 5 × 13 = 1.560
22 × 34 × 5 = 1.620
27 × 13 = 1.664
26 × 33 = 1.728
33 × 5 × 13 = 1.755
24 × 32 × 13 = 1.872
27 × 3 × 5 = 1.920
23 × 35 = 1.944
25 × 5 × 13 = 2.080
2 × 34 × 13 = 2.106
24 × 33 × 5 = 2.160
28 × 32 = 2.304
22 × 32 × 5 × 13 = 2.340
2 × 35 × 5 = 2.430
26 × 3 × 13 = 2.496
29 × 5 = 2.560
25 × 34 = 2.592
23 × 33 × 13 = 2.808
26 × 32 × 5 = 2.880
22 × 36 = 2.916
24 × 3 × 5 × 13 = 3.120
35 × 13 = 3.159
23 × 34 × 5 = 3.240
28 × 13 = 3.328
27 × 33 = 3.456
2 × 33 × 5 × 13 = 3.510
36 × 5 = 3.645
25 × 32 × 13 = 3.744
28 × 3 × 5 = 3.840
24 × 35 = 3.888
26 × 5 × 13 = 4.160
22 × 34 × 13 = 4.212
25 × 33 × 5 = 4.320
29 × 32 = 4.608
23 × 32 × 5 × 13 = 4.680
22 × 35 × 5 = 4.860
Diese Liste wird unten fortgesetzt...

... Diese Liste wird von oben fortgesetzt
27 × 3 × 13 = 4.992
26 × 34 = 5.184
34 × 5 × 13 = 5.265
24 × 33 × 13 = 5.616
27 × 32 × 5 = 5.760
23 × 36 = 5.832
25 × 3 × 5 × 13 = 6.240
2 × 35 × 13 = 6.318
24 × 34 × 5 = 6.480
29 × 13 = 6.656
28 × 33 = 6.912
22 × 33 × 5 × 13 = 7.020
2 × 36 × 5 = 7.290
26 × 32 × 13 = 7.488
29 × 3 × 5 = 7.680
25 × 35 = 7.776
27 × 5 × 13 = 8.320
23 × 34 × 13 = 8.424
26 × 33 × 5 = 8.640
24 × 32 × 5 × 13 = 9.360
36 × 13 = 9.477
23 × 35 × 5 = 9.720
28 × 3 × 13 = 9.984
27 × 34 = 10.368
2 × 34 × 5 × 13 = 10.530
25 × 33 × 13 = 11.232
28 × 32 × 5 = 11.520
24 × 36 = 11.664
26 × 3 × 5 × 13 = 12.480
22 × 35 × 13 = 12.636
25 × 34 × 5 = 12.960
29 × 33 = 13.824
23 × 33 × 5 × 13 = 14.040
22 × 36 × 5 = 14.580
27 × 32 × 13 = 14.976
26 × 35 = 15.552
35 × 5 × 13 = 15.795
28 × 5 × 13 = 16.640
24 × 34 × 13 = 16.848
27 × 33 × 5 = 17.280
25 × 32 × 5 × 13 = 18.720
2 × 36 × 13 = 18.954
24 × 35 × 5 = 19.440
29 × 3 × 13 = 19.968
28 × 34 = 20.736
22 × 34 × 5 × 13 = 21.060
26 × 33 × 13 = 22.464
29 × 32 × 5 = 23.040
25 × 36 = 23.328
27 × 3 × 5 × 13 = 24.960
23 × 35 × 13 = 25.272
26 × 34 × 5 = 25.920
24 × 33 × 5 × 13 = 28.080
23 × 36 × 5 = 29.160
28 × 32 × 13 = 29.952
27 × 35 = 31.104
2 × 35 × 5 × 13 = 31.590
29 × 5 × 13 = 33.280
25 × 34 × 13 = 33.696
28 × 33 × 5 = 34.560
26 × 32 × 5 × 13 = 37.440
22 × 36 × 13 = 37.908
25 × 35 × 5 = 38.880
29 × 34 = 41.472
23 × 34 × 5 × 13 = 42.120
27 × 33 × 13 = 44.928
26 × 36 = 46.656
36 × 5 × 13 = 47.385
28 × 3 × 5 × 13 = 49.920
24 × 35 × 13 = 50.544
27 × 34 × 5 = 51.840
25 × 33 × 5 × 13 = 56.160
24 × 36 × 5 = 58.320
29 × 32 × 13 = 59.904
28 × 35 = 62.208
22 × 35 × 5 × 13 = 63.180
26 × 34 × 13 = 67.392
29 × 33 × 5 = 69.120
27 × 32 × 5 × 13 = 74.880
23 × 36 × 13 = 75.816
26 × 35 × 5 = 77.760
24 × 34 × 5 × 13 = 84.240
28 × 33 × 13 = 89.856
27 × 36 = 93.312
2 × 36 × 5 × 13 = 94.770
29 × 3 × 5 × 13 = 99.840
25 × 35 × 13 = 101.088
28 × 34 × 5 = 103.680
26 × 33 × 5 × 13 = 112.320
25 × 36 × 5 = 116.640
29 × 35 = 124.416
23 × 35 × 5 × 13 = 126.360
27 × 34 × 13 = 134.784
28 × 32 × 5 × 13 = 149.760
24 × 36 × 13 = 151.632
27 × 35 × 5 = 155.520
25 × 34 × 5 × 13 = 168.480
29 × 33 × 13 = 179.712
28 × 36 = 186.624
22 × 36 × 5 × 13 = 189.540
26 × 35 × 13 = 202.176
29 × 34 × 5 = 207.360
27 × 33 × 5 × 13 = 224.640
26 × 36 × 5 = 233.280
24 × 35 × 5 × 13 = 252.720
28 × 34 × 13 = 269.568
29 × 32 × 5 × 13 = 299.520
25 × 36 × 13 = 303.264
28 × 35 × 5 = 311.040
26 × 34 × 5 × 13 = 336.960
29 × 36 = 373.248
23 × 36 × 5 × 13 = 379.080
27 × 35 × 13 = 404.352
28 × 33 × 5 × 13 = 449.280
27 × 36 × 5 = 466.560
25 × 35 × 5 × 13 = 505.440
29 × 34 × 13 = 539.136
26 × 36 × 13 = 606.528
29 × 35 × 5 = 622.080
27 × 34 × 5 × 13 = 673.920
24 × 36 × 5 × 13 = 758.160
28 × 35 × 13 = 808.704
29 × 33 × 5 × 13 = 898.560
28 × 36 × 5 = 933.120
26 × 35 × 5 × 13 = 1.010.880
27 × 36 × 13 = 1.213.056
28 × 34 × 5 × 13 = 1.347.840
25 × 36 × 5 × 13 = 1.516.320
29 × 35 × 13 = 1.617.408
29 × 36 × 5 = 1.866.240
27 × 35 × 5 × 13 = 2.021.760
28 × 36 × 13 = 2.426.112
29 × 34 × 5 × 13 = 2.695.680
26 × 36 × 5 × 13 = 3.032.640
28 × 35 × 5 × 13 = 4.043.520
29 × 36 × 13 = 4.852.224
27 × 36 × 5 × 13 = 6.065.280
29 × 35 × 5 × 13 = 8.087.040
28 × 36 × 5 × 13 = 12.130.560
29 × 36 × 5 × 13 = 24.261.120

Die abschließende Antwort:
(runterscrollen)

24.261.120 hat 280 Teiler:
1; 2; 3; 4; 5; 6; 8; 9; 10; 12; 13; 15; 16; 18; 20; 24; 26; 27; 30; 32; 36; 39; 40; 45; 48; 52; 54; 60; 64; 65; 72; 78; 80; 81; 90; 96; 104; 108; 117; 120; 128; 130; 135; 144; 156; 160; 162; 180; 192; 195; 208; 216; 234; 240; 243; 256; 260; 270; 288; 312; 320; 324; 351; 360; 384; 390; 405; 416; 432; 468; 480; 486; 512; 520; 540; 576; 585; 624; 640; 648; 702; 720; 729; 768; 780; 810; 832; 864; 936; 960; 972; 1.040; 1.053; 1.080; 1.152; 1.170; 1.215; 1.248; 1.280; 1.296; 1.404; 1.440; 1.458; 1.536; 1.560; 1.620; 1.664; 1.728; 1.755; 1.872; 1.920; 1.944; 2.080; 2.106; 2.160; 2.304; 2.340; 2.430; 2.496; 2.560; 2.592; 2.808; 2.880; 2.916; 3.120; 3.159; 3.240; 3.328; 3.456; 3.510; 3.645; 3.744; 3.840; 3.888; 4.160; 4.212; 4.320; 4.608; 4.680; 4.860; 4.992; 5.184; 5.265; 5.616; 5.760; 5.832; 6.240; 6.318; 6.480; 6.656; 6.912; 7.020; 7.290; 7.488; 7.680; 7.776; 8.320; 8.424; 8.640; 9.360; 9.477; 9.720; 9.984; 10.368; 10.530; 11.232; 11.520; 11.664; 12.480; 12.636; 12.960; 13.824; 14.040; 14.580; 14.976; 15.552; 15.795; 16.640; 16.848; 17.280; 18.720; 18.954; 19.440; 19.968; 20.736; 21.060; 22.464; 23.040; 23.328; 24.960; 25.272; 25.920; 28.080; 29.160; 29.952; 31.104; 31.590; 33.280; 33.696; 34.560; 37.440; 37.908; 38.880; 41.472; 42.120; 44.928; 46.656; 47.385; 49.920; 50.544; 51.840; 56.160; 58.320; 59.904; 62.208; 63.180; 67.392; 69.120; 74.880; 75.816; 77.760; 84.240; 89.856; 93.312; 94.770; 99.840; 101.088; 103.680; 112.320; 116.640; 124.416; 126.360; 134.784; 149.760; 151.632; 155.520; 168.480; 179.712; 186.624; 189.540; 202.176; 207.360; 224.640; 233.280; 252.720; 269.568; 299.520; 303.264; 311.040; 336.960; 373.248; 379.080; 404.352; 449.280; 466.560; 505.440; 539.136; 606.528; 622.080; 673.920; 758.160; 808.704; 898.560; 933.120; 1.010.880; 1.213.056; 1.347.840; 1.516.320; 1.617.408; 1.866.240; 2.021.760; 2.426.112; 2.695.680; 3.032.640; 4.043.520; 4.852.224; 6.065.280; 8.087.040; 12.130.560 und 24.261.120
davon 4 Primfaktoren: 2; 3; 5 und 13
24.261.120 und 1 heißen unechte Teiler (auch Trivialteiler genannt), die anderen sind echte Teiler.

Eine schnelle Möglichkeit, die Teiler einer Zahl zu finden, besteht darin, sie in Primfaktoren zu zerlegen.


Erstellen Sie dann alle verschiedenen Kombinationen (Multiplikationen) der Primfaktoren und ihrer Exponenten, falls vorhanden.


Online-Rechner: Berechnen Sie alle Teiler der eingegebenen Zahlen

So berechnen Sie alle Teiler einer Zahl:

Zerlegen Sie die Zahl in Primfaktoren. Dann multiplizieren Sie diese Primfaktoren, indem Sie alle möglichen Kombinationen zwischen ihnen bilden.

Um die gemeinsamen Teiler zweier Zahlen zu berechnen:

Die gemeinsamen Teiler zweier Zahlen sind alle Teiler des größten gemeinsamen Teilers, ggT.

Zerlegen Sie den größten gemeinsamen Teiler in Primfaktoren. Dann multiplizieren Sie diese Primfaktoren, indem Sie alle möglichen Kombinationen zwischen ihnen bilden.

Die letzten 10 Sätze berechneter Teiler: von einer Zahl oder die gemeinsamen Teiler von zwei Zahlen

Theorie: Teiler, gemeinsame Teiler, der größte gemeinsame Teiler (ggT)

  • Wenn die Zahl „t“ ein Teiler der Zahl „a“ ist, dann werden wir bei der Primfaktorzerlegung von „t“ nur auf Primfaktoren stoßen, die auch in der Primfaktorzerlegung von „a“ vorkommen.
  • Wenn Exponenten beteiligt sind, ist der maximale Wert eines Exponenten für jede Basis einer Potenz, die in der Primfaktorzerlegung von „t“ gefunden wird, höchstens gleich dem Exponenten derselben Basis, die in der Primfaktorzerlegung von „a“ enthalten ist.
  • Hinweis: 23 = 2 × 2 × 2 = 8. 2 heißt Basis und 3 ist Exponent. Der Exponent zeigt an, wie oft die Basis mit sich selbst multipliziert wird. 23 ist die Potenz und 8 ist der Wert der Potenz. Wir sagen: 2 hoch 3.
  • Zum Beispiel ist 12 ein Teiler von 120 – der Rest ist Null, wenn 120 durch 12 geteilt wird.
  • Schauen wir uns die Primfaktorzerlegung beider Zahlen an und beachten Sie die Basen und die Exponenten, die bei der Primfaktorzerlegung beider Zahlen vorkommen:
  • 12 = 2 × 2 × 3 = 22 × 3
  • 120 = 2 × 2 × 2 × 3 × 5 = 23 × 3 × 5
  • 120 enthält alle Primfaktoren von 12, und alle Exponenten ihrer Basen sind höher als die von 12.
  • Wenn „t“ ein gemeinsamer Teiler von „a“ und „b“ ist, dann enthält die Primfaktorzerlegung von „t“ nur die gemeinsamen Primfaktoren, die an den Primfaktorzerlegungen von „a“ und „b“ beteiligt sind.
  • Wenn Exponenten beteiligt sind, ist der maximale Wert eines Exponenten für jede Basis einer Potenz, die in der Primfaktorzerlegung von „t“ vorkommt, höchstens gleich dem Minimum der Exponenten derselben Basis, die in der Primfaktorzerlegung von auftritt Zahlen „a“ und „b“.
  • Zum Beispiel ist 12 der gemeinsame Teiler von 48 und 360.
  • Der Rest ist Null, wenn entweder 48 durch 12 oder 360 durch 12 dividiert wird.
  • Hier sind die Primfaktorzerlegungen der drei Zahlen 12, 48 und 360:
  • 12 = 22 × 3
  • 48 = 24 × 3
  • 360 = 23 × 32 × 5
  • Bitte beachten Sie, dass 48 und 360 mehr Teiler haben: 2, 3, 4, 6, 8, 12, 24. Unter ihnen ist 24 der größte gemeinsame Teiler, ggT, von 48 und 360.
  • Der größte gemeinsame Teiler, ggT, zweier Zahlen, „a“ und „b“, ist das Produkt aller gemeinsamen Primfaktoren, die an der Primfaktorzerlegung von „a“ und „b“ durch die niedrigsten Potenzen beteiligt sind.
  • Basierend auf dieser Regel wird der größte gemeinsame Teiler, ggT, mehrerer Zahlen berechnet, wie im Beispiel unten gezeigt...
  • ggT (1.260; 3.024; 5.544) = ?
  • 1.260 = 22 × 32
  • 3.024 = 24 × 32 × 7
  • 5.544 = 23 × 32 × 7 × 11
  • Die gemeinsamen Primfaktoren sind:
  • 2 - sein niedrigster Exponent ist: min.(2; 3; 4) = 2
  • 3 - sein niedrigster Exponent ist: min.(2; 2; 2) = 2
  • ggT (1.260; 3.024; 5.544) = 22 × 32 = 252
  • Teilerfremde Zahlen:
  • Wenn zwei Zahlen „a“ und „b“ keine anderen gemeinsamen Teiler als 1 haben, ggT (a; b) = 1, dann heißen die Zahlen „a“ und „b“ teilerfremd.
  • Teiler der ggT
  • Teiler von ggT: Wenn „a“ und „b“ nicht teilerfremd sind, dann ist jeder gemeinsame Teiler von „a“ und „b“ auch ein Teiler des größten gemeinsamen Teilers ggT von „a“ und „b“.