Rechner: Brüche vollständig auf ihre Grunddarstellung kürzen, Erklärungen. Ergebnis geschrieben als echter oder unechter Bruch, gemischte Zahl, Ganzzahl oder Dezimalzahl und als Prozentsatz

Online-Rechner: Brüche vollständig auf ihre Grunddarstellung kürzen

So kürzen Sie Brüche vollständig auf ihre Grunddarstellung:

Teilen Sie Zähler und Nenner durch ihren größten gemeinsamen Teiler, ggT.

Ergebnis geschrieben als echter oder als unechter Bruch, gemischte Zahl, Dezimalzahl oder Ganzzahl, Prozentsatz

Die letzten 10 Brüche, die vollständig auf ihre Grunddarstellung gekürzt wurden

Kürzen von Brüchen auf ihre Grunddarstellung

Schritte, um einen Bruch zu kürzen, um ihn auf seine Grunddarstellung zu bringen, den kleinstmöglichen Zähler und Nenner:

  • 1) Führen Sie die Primfaktorzerlegung von Zähler und Nenner des Bruchs durch.
  • 2) Berechne den größten gemeinsamen Teiler von Zähler und Nenner des Bruchs.
  • 3) Teilen Sie sowohl den Zähler als auch den Nenner des Bruchs durch ihren größten gemeinsamen Teiler, ggT.
  • Der so erhaltene Bruch wird verkürzter Bruch oder vollständig auf seine Grunddarstellung gekürzter Bruch genannt.
  • Ein vollständig gekürzter Bruch darf nicht mehr gekürzt werden, er ist bereits in seiner einfachsten Form mit kleinstmöglichem Zähler und Nenner.

Beispiel: Kürzen Sie den Bruch 315/1.155 vollständig auf seine Grunddarstellung.

  • 1) Führen Sie die Primfaktorzerlegung von Zähler und Nenner des Bruchs durch.

  • Der Zähler der Brüche ist 315, und seine Primfaktorisierung ist:
    315 = 3 × 3 × 5 × 7 = 32 × 5 × 7
  • Der Nenner des Bruchs ist 1.155 und seine Primfaktorzerlegung ist:
    1.155 = 3 × 5 × 7 × 11.
  • 2) Berechne den größten gemeinsamen Teiler von Zähler und Nenner des Bruchs.

  • Der größte gemeinsame Teiler der beiden Zahlen, des Zählers und des Nenners, (315 und 1.155), wird berechnet, indem alle ihre gemeinsamen Primfaktoren mit den niedrigsten Potenzen multipliziert werden:
  • ggT (315; 1.155) = (32 × 5 × 7; 3 × 5 × 7 × 11) = 3 × 5 × 7 = 105
  • Der Artikel wird unten fortgesetzt...
  • 3) Teilen Sie sowohl den Zähler als auch den Nenner des Bruchs durch ihren größten gemeinsamen Teiler, ggT.

  • Der Zähler und der Nenner des Bruchs werden durch ihren größten gemeinsamen Teiler dividiert:
  • 315/1.155 =
    (32 × 5 × 7)/(3 × 5 × 7 × 11) =
    ((32 × 5 × 7) : (3 × 5 × 7)) / ((3 × 5 × 7 × 11) : (3 × 5 × 7)) =
    3/11
  • Der so erhaltene Bruch wird als vollständig auf seine Grunddarstellung verkürzter Bruch bezeichnet - einer mit dem kleinstmöglichen Zähler und Nenner.

Warum Brüche kürzen?

  • Bei Operationen mit Brüchen müssen wir diese oft auf den gleichen Nenner bringen, zum Beispiel beim Addieren, Subtrahieren oder Vergleichen.
  • Manchmal sind sowohl die Zähler als auch die Nenner dieser Brüche große Zahlen, und Berechnungen mit solchen Zahlen können schwierig sein.
  • Durch das Kürzen eines Bruchs werden sowohl der Zähler als auch der Nenner auf kleinere Werte reduziert - viel einfacher zu handhaben und so der Gesamtaufwand zu reduzieren.

Lesen Sie den gesamten Artikel ⇒ Brüche vollständig auf ihre Grunddarstellung kürzen: Schritte und Beispiele