1.006.720: Berechnen Sie die Teiler der Zahl 1.006.720 (echte, unechte Teiler und die Primfaktoren)

Die Teiler der Zahl 1.006.720

1. Führen Sie die Primfaktorzerlegung der Zahl 1.006.720 durch:

Die Primfaktorzerlegung einer Zahl N = die Teilung der Zahl N in kleinere Zahlen, die Primzahlen sind. Die Zahl N ergibt sich aus der Multiplikation dieser Primzahlen.


1.006.720 = 27 × 5 × 112 × 13
1.006.720 ist keine Primzahl, sondern eine zusammengesetzte Zahl.


* Die natürlichen Zahlen, die nur durch sich selbst und 1 teilbar sind, heißen Primzahlen. Eine Primzahl hat genau zwei Teiler: 1 und sich selbst.
* Eine zusammengesetzte Zahl ist eine natürliche Zahl, die mindestens einen anderen Teiler als 1 und sich selbst hat.


2. Multiplizieren Sie die Primfaktoren der Zahl 1.006.720

Führen Sie alle verschiedenen Kombinationen (die Multiplikationen) der Primfaktoren durch, die bei der Primfaktorzerlegung der Zahl vorkommen.


Berücksichtigen Sie auch die Exponenten dieser Primfaktoren.

Fügen Sie auch 1 zur Liste der Teiler hinzu. Alle Zahlen sind durch 1 teilbar.


Alle Teiler sind unten aufgelistet - in aufsteigender Reihenfolge

Die Liste der Teiler:

weder Primzahl noch zusammengesetzte = 1
Primfaktor = 2
22 = 4
Primfaktor = 5
23 = 8
2 × 5 = 10
Primfaktor = 11
Primfaktor = 13
24 = 16
22 × 5 = 20
2 × 11 = 22
2 × 13 = 26
25 = 32
23 × 5 = 40
22 × 11 = 44
22 × 13 = 52
5 × 11 = 55
26 = 64
5 × 13 = 65
24 × 5 = 80
23 × 11 = 88
23 × 13 = 104
2 × 5 × 11 = 110
112 = 121
27 = 128
2 × 5 × 13 = 130
11 × 13 = 143
25 × 5 = 160
24 × 11 = 176
24 × 13 = 208
22 × 5 × 11 = 220
2 × 112 = 242
22 × 5 × 13 = 260
2 × 11 × 13 = 286
26 × 5 = 320
25 × 11 = 352
25 × 13 = 416
23 × 5 × 11 = 440
22 × 112 = 484
23 × 5 × 13 = 520
22 × 11 × 13 = 572
5 × 112 = 605
27 × 5 = 640
26 × 11 = 704
5 × 11 × 13 = 715
26 × 13 = 832
24 × 5 × 11 = 880
23 × 112 = 968
Diese Liste wird unten fortgesetzt...

... Diese Liste wird von oben fortgesetzt
24 × 5 × 13 = 1.040
23 × 11 × 13 = 1.144
2 × 5 × 112 = 1.210
27 × 11 = 1.408
2 × 5 × 11 × 13 = 1.430
112 × 13 = 1.573
27 × 13 = 1.664
25 × 5 × 11 = 1.760
24 × 112 = 1.936
25 × 5 × 13 = 2.080
24 × 11 × 13 = 2.288
22 × 5 × 112 = 2.420
22 × 5 × 11 × 13 = 2.860
2 × 112 × 13 = 3.146
26 × 5 × 11 = 3.520
25 × 112 = 3.872
26 × 5 × 13 = 4.160
25 × 11 × 13 = 4.576
23 × 5 × 112 = 4.840
23 × 5 × 11 × 13 = 5.720
22 × 112 × 13 = 6.292
27 × 5 × 11 = 7.040
26 × 112 = 7.744
5 × 112 × 13 = 7.865
27 × 5 × 13 = 8.320
26 × 11 × 13 = 9.152
24 × 5 × 112 = 9.680
24 × 5 × 11 × 13 = 11.440
23 × 112 × 13 = 12.584
27 × 112 = 15.488
2 × 5 × 112 × 13 = 15.730
27 × 11 × 13 = 18.304
25 × 5 × 112 = 19.360
25 × 5 × 11 × 13 = 22.880
24 × 112 × 13 = 25.168
22 × 5 × 112 × 13 = 31.460
26 × 5 × 112 = 38.720
26 × 5 × 11 × 13 = 45.760
25 × 112 × 13 = 50.336
23 × 5 × 112 × 13 = 62.920
27 × 5 × 112 = 77.440
27 × 5 × 11 × 13 = 91.520
26 × 112 × 13 = 100.672
24 × 5 × 112 × 13 = 125.840
27 × 112 × 13 = 201.344
25 × 5 × 112 × 13 = 251.680
26 × 5 × 112 × 13 = 503.360
27 × 5 × 112 × 13 = 1.006.720

Die abschließende Antwort:
(runterscrollen)

1.006.720 hat 96 Teiler:
1; 2; 4; 5; 8; 10; 11; 13; 16; 20; 22; 26; 32; 40; 44; 52; 55; 64; 65; 80; 88; 104; 110; 121; 128; 130; 143; 160; 176; 208; 220; 242; 260; 286; 320; 352; 416; 440; 484; 520; 572; 605; 640; 704; 715; 832; 880; 968; 1.040; 1.144; 1.210; 1.408; 1.430; 1.573; 1.664; 1.760; 1.936; 2.080; 2.288; 2.420; 2.860; 3.146; 3.520; 3.872; 4.160; 4.576; 4.840; 5.720; 6.292; 7.040; 7.744; 7.865; 8.320; 9.152; 9.680; 11.440; 12.584; 15.488; 15.730; 18.304; 19.360; 22.880; 25.168; 31.460; 38.720; 45.760; 50.336; 62.920; 77.440; 91.520; 100.672; 125.840; 201.344; 251.680; 503.360 und 1.006.720
davon 4 Primfaktoren: 2; 5; 11 und 13
1.006.720 und 1 heißen unechte Teiler (auch Trivialteiler genannt), die anderen sind echte Teiler.

Eine schnelle Möglichkeit, die Teiler einer Zahl zu finden, besteht darin, sie in Primfaktoren zu zerlegen.


Erstellen Sie dann alle verschiedenen Kombinationen (Multiplikationen) der Primfaktoren und ihrer Exponenten, falls vorhanden.


Online-Rechner: Berechnen Sie alle Teiler der eingegebenen Zahlen

So berechnen Sie alle Teiler einer Zahl:

Zerlegen Sie die Zahl in Primfaktoren. Dann multiplizieren Sie diese Primfaktoren, indem Sie alle möglichen Kombinationen zwischen ihnen bilden.

Um die gemeinsamen Teiler zweier Zahlen zu berechnen:

Die gemeinsamen Teiler zweier Zahlen sind alle Teiler des größten gemeinsamen Teilers, ggT.

Zerlegen Sie den größten gemeinsamen Teiler in Primfaktoren. Dann multiplizieren Sie diese Primfaktoren, indem Sie alle möglichen Kombinationen zwischen ihnen bilden.

Die letzten 10 Sätze berechneter Teiler: von einer Zahl oder die gemeinsamen Teiler von zwei Zahlen

Theorie: Teiler, gemeinsame Teiler, der größte gemeinsame Teiler (ggT)

  • Wenn die Zahl „t“ ein Teiler der Zahl „a“ ist, dann werden wir bei der Primfaktorzerlegung von „t“ nur auf Primfaktoren stoßen, die auch in der Primfaktorzerlegung von „a“ vorkommen.
  • Wenn Exponenten beteiligt sind, ist der maximale Wert eines Exponenten für jede Basis einer Potenz, die in der Primfaktorzerlegung von „t“ gefunden wird, höchstens gleich dem Exponenten derselben Basis, die in der Primfaktorzerlegung von „a“ enthalten ist.
  • Hinweis: 23 = 2 × 2 × 2 = 8. 2 heißt Basis und 3 ist Exponent. Der Exponent zeigt an, wie oft die Basis mit sich selbst multipliziert wird. 23 ist die Potenz und 8 ist der Wert der Potenz. Wir sagen: 2 hoch 3.
  • Zum Beispiel ist 12 ein Teiler von 120 – der Rest ist Null, wenn 120 durch 12 geteilt wird.
  • Schauen wir uns die Primfaktorzerlegung beider Zahlen an und beachten Sie die Basen und die Exponenten, die bei der Primfaktorzerlegung beider Zahlen vorkommen:
  • 12 = 2 × 2 × 3 = 22 × 3
  • 120 = 2 × 2 × 2 × 3 × 5 = 23 × 3 × 5
  • 120 enthält alle Primfaktoren von 12, und alle Exponenten ihrer Basen sind höher als die von 12.
  • Wenn „t“ ein gemeinsamer Teiler von „a“ und „b“ ist, dann enthält die Primfaktorzerlegung von „t“ nur die gemeinsamen Primfaktoren, die an den Primfaktorzerlegungen von „a“ und „b“ beteiligt sind.
  • Wenn Exponenten beteiligt sind, ist der maximale Wert eines Exponenten für jede Basis einer Potenz, die in der Primfaktorzerlegung von „t“ vorkommt, höchstens gleich dem Minimum der Exponenten derselben Basis, die in der Primfaktorzerlegung von auftritt Zahlen „a“ und „b“.
  • Zum Beispiel ist 12 der gemeinsame Teiler von 48 und 360.
  • Der Rest ist Null, wenn entweder 48 durch 12 oder 360 durch 12 dividiert wird.
  • Hier sind die Primfaktorzerlegungen der drei Zahlen 12, 48 und 360:
  • 12 = 22 × 3
  • 48 = 24 × 3
  • 360 = 23 × 32 × 5
  • Bitte beachten Sie, dass 48 und 360 mehr Teiler haben: 2, 3, 4, 6, 8, 12, 24. Unter ihnen ist 24 der größte gemeinsame Teiler, ggT, von 48 und 360.
  • Der größte gemeinsame Teiler, ggT, zweier Zahlen, „a“ und „b“, ist das Produkt aller gemeinsamen Primfaktoren, die an der Primfaktorzerlegung von „a“ und „b“ durch die niedrigsten Potenzen beteiligt sind.
  • Basierend auf dieser Regel wird der größte gemeinsame Teiler, ggT, mehrerer Zahlen berechnet, wie im Beispiel unten gezeigt...
  • ggT (1.260; 3.024; 5.544) = ?
  • 1.260 = 22 × 32
  • 3.024 = 24 × 32 × 7
  • 5.544 = 23 × 32 × 7 × 11
  • Die gemeinsamen Primfaktoren sind:
  • 2 - sein niedrigster Exponent ist: min.(2; 3; 4) = 2
  • 3 - sein niedrigster Exponent ist: min.(2; 2; 2) = 2
  • ggT (1.260; 3.024; 5.544) = 22 × 32 = 252
  • Teilerfremde Zahlen:
  • Wenn zwei Zahlen „a“ und „b“ keine anderen gemeinsamen Teiler als 1 haben, ggT (a; b) = 1, dann heißen die Zahlen „a“ und „b“ teilerfremd.
  • Teiler der ggT
  • Teiler von ggT: Wenn „a“ und „b“ nicht teilerfremd sind, dann ist jeder gemeinsame Teiler von „a“ und „b“ auch ein Teiler des größten gemeinsamen Teilers ggT von „a“ und „b“.