3.121 und 5.949 sind Teilerfremde... wenn:
- Wenn es keine andere Zahl als 1 gibt, die beide Zahlen ohne Rest teilt. Oder...
- Oder mit anderen Worten – wenn ihr größter gemeinsamer Teiler, ggT, 1 ist.
Berechnen Sie den größten gemeinsamen Teiler, ggT, der Zahlen
Methode 1. Die Primfaktorzerlegung:
Die Primfaktorzerlegung einer Zahl N = ist die Operation der Teilung der Zahl N in kleinere Zahlen - diese kleineren Zahlen sind Primzahlen. Die Zahl N ergibt sich aus der Multiplikation dieser Primzahlen.
3.121 ist Primzahl, kann nicht in andere Primfaktoren zerlegt werden.
5.949 = 32 × 661
5.949 ist keine Primzahl, ist Zusammengesetzte Zahl.
- Die Zahlen, die nur durch sich selbst und 1 teilbar sind, heißen Primzahlen. Eine Primzahl hat nur zwei Teiler: 1 und sich selbst.
- Eine zusammengesetzte Zahl ist eine natürliche Zahl, die mindestens einen anderen Teiler als 1 und sich selbst hat.
Berechnen Sie den größten gemeinsamen Teiler, ggT:
Multiplizieren Sie alle gemeinsamen Primfaktoren der beiden Zahlen mit ihren kleineren Exponenten.
1. Operation: die größte Zahl durch die kleinste Zahl:
5.949 : 3.121 = 1 + 2.828
2. Operation: Teilen Sie die kleinere Zahl durch den Rest aus der obigen Operation:
3.121 : 2.828 = 1 + 293
3. Operation: Teilen Sie den Rest der 1. Operation durch den Rest der 2. Operation:
2.828 : 293 = 9 + 191
4. Operation: Teilen Sie den Rest der 2. Operation durch den Rest der 3. Operation:
293 : 191 = 1 + 102
5. Operation: Teilen Sie den Rest der 3. Operation durch den Rest der 4. Operation:
191 : 102 = 1 + 89
6. Operation: Teilen Sie den Rest der 4. Operation durch den Rest der 5. Operation:
102 : 89 = 1 + 13
7. Operation: Teilen Sie den Rest der 5. Operation durch den Rest der 6. Operation:
89 : 13 = 6 + 11
8. Operation: Teilen Sie den Rest der 6. Operation durch den Rest der 7. Operation:
13 : 11 = 1 + 2
9. Operation: Teilen Sie den Rest der 7. Operation durch den Rest der 8. Operation:
11 : 2 = 5 + 1
10. Operation: Teilen Sie den Rest der 8. Operation durch den Rest der 9. Operation:
2 : 1 = 2 + 0
Bei diesem Schritt ist der Rest Null, also müssen wir aufhören:
1 ist die Zahl, nach der wir gesucht haben - das ist der letzte Rest, der von Null verschieden ist.
Dies ist der größte gemeinsame Teiler.
ggT (3.121; 5.949) = 1
Sind die Zahlen 3.121 und 5.949 teilerfremd? Ja.
ggT (3.121; 5.949) = 1