2.231 und 9.066 sind Teilerfremde... wenn:
- Wenn es keine andere Zahl als 1 gibt, die beide Zahlen ohne Rest teilt. Oder...
- Oder mit anderen Worten – wenn ihr größter gemeinsamer Teiler, ggT, 1 ist.
Berechnen Sie den größten gemeinsamen Teiler, ggT, der Zahlen
Methode 1. Die Primfaktorzerlegung:
Die Primfaktorzerlegung einer Zahl N = ist die Operation der Teilung der Zahl N in kleinere Zahlen - diese kleineren Zahlen sind Primzahlen. Die Zahl N ergibt sich aus der Multiplikation dieser Primzahlen.
2.231 = 23 × 97
2.231 ist keine Primzahl, ist Zusammengesetzte Zahl.
9.066 = 2 × 3 × 1.511
9.066 ist keine Primzahl, ist Zusammengesetzte Zahl.
- Die Zahlen, die nur durch sich selbst und 1 teilbar sind, heißen Primzahlen. Eine Primzahl hat nur zwei Teiler: 1 und sich selbst.
- Eine zusammengesetzte Zahl ist eine natürliche Zahl, die mindestens einen anderen Teiler als 1 und sich selbst hat.
Berechnen Sie den größten gemeinsamen Teiler, ggT:
Multiplizieren Sie alle gemeinsamen Primfaktoren der beiden Zahlen mit ihren kleineren Exponenten.
1. Operation: die größte Zahl durch die kleinste Zahl:
9.066 : 2.231 = 4 + 142
2. Operation: Teilen Sie die kleinere Zahl durch den Rest aus der obigen Operation:
2.231 : 142 = 15 + 101
3. Operation: Teilen Sie den Rest der 1. Operation durch den Rest der 2. Operation:
142 : 101 = 1 + 41
4. Operation: Teilen Sie den Rest der 2. Operation durch den Rest der 3. Operation:
101 : 41 = 2 + 19
5. Operation: Teilen Sie den Rest der 3. Operation durch den Rest der 4. Operation:
41 : 19 = 2 + 3
6. Operation: Teilen Sie den Rest der 4. Operation durch den Rest der 5. Operation:
19 : 3 = 6 + 1
7. Operation: Teilen Sie den Rest der 5. Operation durch den Rest der 6. Operation:
3 : 1 = 3 + 0
Bei diesem Schritt ist der Rest Null, also müssen wir aufhören:
1 ist die Zahl, nach der wir gesucht haben - das ist der letzte Rest, der von Null verschieden ist.
Dies ist der größte gemeinsame Teiler.
ggT (2.231; 9.066) = 1
Sind die Zahlen 2.231 und 9.066 teilerfremd? Ja.
ggT (2.231; 9.066) = 1