2.222 und 9.049 sind Teilerfremde... wenn:
- Wenn es keine andere Zahl als 1 gibt, die beide Zahlen ohne Rest teilt. Oder...
- Oder mit anderen Worten – wenn ihr größter gemeinsamer Teiler, ggT, 1 ist.
Berechnen Sie den größten gemeinsamen Teiler, ggT, der Zahlen
Methode 1. Die Primfaktorzerlegung:
Die Primfaktorzerlegung einer Zahl N = ist die Operation der Teilung der Zahl N in kleinere Zahlen - diese kleineren Zahlen sind Primzahlen. Die Zahl N ergibt sich aus der Multiplikation dieser Primzahlen.
2.222 = 2 × 11 × 101
2.222 ist keine Primzahl, ist Zusammengesetzte Zahl.
9.049 ist Primzahl, kann nicht in andere Primfaktoren zerlegt werden.
- Die Zahlen, die nur durch sich selbst und 1 teilbar sind, heißen Primzahlen. Eine Primzahl hat nur zwei Teiler: 1 und sich selbst.
- Eine zusammengesetzte Zahl ist eine natürliche Zahl, die mindestens einen anderen Teiler als 1 und sich selbst hat.
Berechnen Sie den größten gemeinsamen Teiler, ggT:
Multiplizieren Sie alle gemeinsamen Primfaktoren der beiden Zahlen mit ihren kleineren Exponenten.
1. Operation: die größte Zahl durch die kleinste Zahl:
9.049 : 2.222 = 4 + 161
2. Operation: Teilen Sie die kleinere Zahl durch den Rest aus der obigen Operation:
2.222 : 161 = 13 + 129
3. Operation: Teilen Sie den Rest der 1. Operation durch den Rest der 2. Operation:
161 : 129 = 1 + 32
4. Operation: Teilen Sie den Rest der 2. Operation durch den Rest der 3. Operation:
129 : 32 = 4 + 1
5. Operation: Teilen Sie den Rest der 3. Operation durch den Rest der 4. Operation:
32 : 1 = 32 + 0
Bei diesem Schritt ist der Rest Null, also müssen wir aufhören:
1 ist die Zahl, nach der wir gesucht haben - das ist der letzte Rest, der von Null verschieden ist.
Dies ist der größte gemeinsame Teiler.
ggT (2.222; 9.049) = 1
Sind die Zahlen 2.222 und 9.049 teilerfremd? Ja.
ggT (2.222; 9.049) = 1