Methode 1. Primfaktorzerlegung:
Die Primfaktorzerlegung einer Zahl N = Teilung der Zahl N in kleinere Zahlen - das sind Primzahlen. Die Zahl N ergibt sich aus der Multiplikation dieser Primzahlen.
7.371 = 34 × 7 × 13
7.371 ist keine Primzahl, sondern eine zusammengesetzte Zahl.
12 = 22 × 3
12 ist keine Primzahl, sondern eine zusammengesetzte Zahl.
* Die natürlichen Zahlen, die nur durch sich selbst und 1 teilbar sind, heißen Primzahlen. Eine Primzahl hat genau zwei Teiler: 1 und sich selbst.
* Eine zusammengesetzte Zahl ist eine natürliche Zahl, die mindestens einen anderen Teiler als 1 und sich selbst hat.
Berechnen Sie den größten gemeinsamen Teiler:
Multiplizieren Sie alle gemeinsamen Primzahlen mit ihren kleineren Exponenten.
ggT (7.371; 12) = 3
ggT (7.371; 12) = 3
Die beiden Zahlen haben gemeinsame Primfaktoren.
Methode 2. Euklidischer Algorithmus:
Dieser Algorithmus beinhaltet den Prozess der Division von Zahlen und der Berechnung der Reste.
'a' und 'b' sind die beiden natürlichen Zahlen, 'a' >= 'b'.
Teilen Sie 'a' durch 'b' und erhalten Sie den Rest der Operation, 'r'.
Wenn 'r' = 0 ist, STOP. 'b' = der ggT von 'a' und 'b'.
Sonst: Ersetzen Sie ('a' durch 'b') und ('b' durch 'r'). Kehren Sie zum obigen Schritt der Teilung zurück.
1. Operation: die größte Zahl durch die kleinste Zahl:
7.371 : 12 = 614 + 3
2. Operation: Teilen Sie die kleinere Zahl durch den Rest aus der obigen Operation:
12 : 3 = 4 + 0
Bei diesem Schritt ist der Rest Null, also müssen wir aufhören:
3 ist die Zahl, nach der wir gesucht haben - das ist der letzte Rest, der von Null verschieden ist.
Dies ist der größte gemeinsame Teiler.
Der größte gemeinsame Teiler:
ggT (7.371; 12) = 3
ggT (7.371; 12) = 3