ggT (3; 73.753.599) = ? Größten gemeinsamen Teiler
Berechnen Sie den größten gemeinsamen Teiler, ggT (3; 73.753.599), mithilfe ihrer Primfaktorzerlegung, der Teilbarkeit von Zahlen oder des euklidischen Algorithmus
Methode 1. Die Teilbarkeit der Zahlen:
Teilen Sie die größere Zahl durch die kleinere.
Beachten Sie, dass beim Teilen der Zahlen der Rest Null ist:
73.753.599 : 3 = 24.584.533 + 0
⇒ 73.753.599 = 3 × 24.584.533
73.753.599 ist also durch 3 teilbar.
Und 3 ist ein Teiler von 73.753.599.
Außerdem ist der größte Teiler von 3 die Zahl selbst, 3.
Der größte gemeinsame Teiler,
ggT (3; 73.753.599) = 3
73.753.599 ist durch 3 teilbar
Scrollen Sie nach unten für die 2. Methode...
Methode 2. Primfaktorzerlegung:
Die Primfaktorzerlegung einer Zahl N = Teilung der Zahl N in kleinere Zahlen - das sind Primzahlen. Die Zahl N ergibt sich aus der Multiplikation dieser Primzahlen.
3 ist Primzahl, kann nicht in andere Primfaktoren zerlegt werden.
73.753.599 = 3 × 17 × 59 × 127 × 193
73.753.599 ist keine Primzahl, sondern eine zusammengesetzte Zahl.
* Die natürlichen Zahlen, die nur durch sich selbst und 1 teilbar sind, heißen Primzahlen. Eine Primzahl hat genau zwei Teiler: 1 und sich selbst.
* Eine zusammengesetzte Zahl ist eine natürliche Zahl, die mindestens einen anderen Teiler als 1 und sich selbst hat.
Berechnen Sie den größten gemeinsamen Teiler:
Multiplizieren Sie alle gemeinsamen Primzahlen mit ihren kleineren Exponenten.
Der größte gemeinsame Teiler,
ggT (3; 73.753.599) = 3
73.753.599 enthält alle Primfaktoren der Zahl 3
73.753.599 ist durch 3 teilbar.
Warum müssen wir den größten gemeinsamen Teiler berechnen?
Sobald Sie den größten gemeinsamen Teiler des Zählers und das Nenners eines Bruchs berechnet haben, wird es einfacher, ihn vollständig auf seine grundlegende Darstellung zu kürzen.
Andere ähnliche Operationen mit dem größten gemeinsamen Teiler: