Berechnen Sie den größten gemeinsamen Teiler
ggT (1.876; 2.759) = ?
Methode 1. Primfaktorzerlegung:
Die Primfaktorzerlegung einer Zahl N = Teilung der Zahl N in kleinere Zahlen - das sind Primzahlen. Die Zahl N ergibt sich aus der Multiplikation dieser Primzahlen.
1.876 = 22 × 7 × 67
1.876 ist keine Primzahl, sondern eine zusammengesetzte Zahl.
2.759 = 31 × 89
2.759 ist keine Primzahl, sondern eine zusammengesetzte Zahl.
- Die natürlichen Zahlen, die nur durch sich selbst und 1 teilbar sind, heißen Primzahlen. Eine Primzahl hat genau zwei Teiler: 1 und sich selbst.
- Eine zusammengesetzte Zahl ist eine natürliche Zahl, die mindestens einen anderen Teiler als 1 und sich selbst hat.
Berechnen Sie den größten gemeinsamen Teiler:
Multiplizieren Sie alle gemeinsamen Primzahlen mit ihren kleineren Exponenten.
Aber die beiden Zahlen haben keine gemeinsamen Primfaktoren.
1. Operation: die größte Zahl durch die kleinste Zahl:
2.759 : 1.876 = 1 + 883
2. Operation: Teilen Sie die kleinere Zahl durch den Rest aus der obigen Operation:
1.876 : 883 = 2 + 110
3. Operation: Teilen Sie den Rest der 1. Operation durch den Rest der 2. Operation:
883 : 110 = 8 + 3
4. Operation: Teilen Sie den Rest der 2. Operation durch den Rest der 3. Operation:
110 : 3 = 36 + 2
5. Operation: Teilen Sie den Rest der 3. Operation durch den Rest der 4. Operation:
3 : 2 = 1 + 1
6. Operation: Teilen Sie den Rest der 4. Operation durch den Rest der 5. Operation:
2 : 1 = 2 + 0
Bei diesem Schritt ist der Rest Null, also müssen wir aufhören:
1 ist die Zahl, nach der wir gesucht haben - das ist der letzte Rest, der von Null verschieden ist.
Dies ist der größte gemeinsame Teiler.
Der größte gemeinsame Teiler:
ggT (1.876; 2.759) = 1
Teilerfremde Zahlen (relativ prim).
Die beiden Zahlen haben keine gemeinsamen Primfaktoren