Der größte gemeinsame Teiler (ggT)
- Anmerkung: Die Primfaktorzerlegung einer Zahl: Finden der Primzahlen, die miteinander multipliziert werden, um diese Zahl zu ergeben.
- Nehmen wir an, die Zahl „t“ ist ein Teiler der Zahl „a“.
- Nachdem wir die Primfaktorisierung von "a" und "t" durchgeführt haben, stellen wir fest, dass:
- 1) alle Primfaktoren von „t“ sind auch Primfaktoren von „a“
- und
- 2) die Exponenten der Primfaktoren von "t" sind gleich oder kleiner als die Exponenten der Primfaktoren von "a" (siehe unten *)
- Zum Beispiel, die Zahl 12 ist ein Teiler der Zahl 60:
- 12 = 2 × 2 × 3 = 22 × 3
- 60 = 2 × 2 × 3 × 5 = 22 × 3 × 5
- * Hinweis: 23 = 2 × 2 × 2 = 8. Wir sagen: 2 hoch 3. In diesem Beispiel ist 3 der Exponent und 2 die Basis. Der Exponent zeigt an, wie oft die Basis mit sich selbst multipliziert wird. 23 ist die Potenz und 8 ist der Wert der Potenz.
- Wenn die Zahl „t“ ein gemeinsamer Teiler der Zahlen „a“ und „b“ ist, dann gilt:
- 1) „t“ hat nur die Primfaktoren, die auch in die Primfaktorzerlegung von „a“ und „b“ eingreifen
- und
- 2) jeder Primfaktor von „t“ hat die kleinsten Exponenten im Vergleich zu Primfaktoren der Zahlen „a“ und „b“.
- Zum Beispiel ist die Zahl 12 der gemeinsame Teiler der Zahlen 48 und 360. Unten sehen Sie ihre Primfaktorzerlegung:
- 12 = 22 × 3
- 48 = 24 × 3
- 360 = 23 × 32 × 5
- Sie können sehen, dass die Zahl 12 nur die Primfaktoren hat, die auch in der Primfaktorzerlegung der Zahlen 48 und 360 vorkommen.
- Sie können oben sehen, dass die Zahlen 48 und 360 mehrere gemeinsame Teiler enthalten: 2, 3, 4, 6, 8, 12, 24. Von diesen ist 24 der größte gemeinsame Teiler (ggT) von 48 und 360.
- 24 = 2 × 2 × 2 × 3 = 23 × 3
- 48 = 24 × 3
- 360 = 23 × 32 × 5
- 24, der größte gemeinsame Teiler der Zahlen 48 und 360, errechnet sich als Produkt aller gemeinsamen Primfaktoren der beiden Zahlen mit den kleinsten Exponenten (Potenzen).
- Wenn zwei Zahlen „a“ und „b“ keinen anderen gemeinsamen Teiler als 1 haben, ggT (a, b) = 1, sind die Zahlen „a“ und „b“ teilerfremde Zahlen.
- Wenn „a“ und „b“ keine teilerfremden Zahlen sind, dann ist jeder gemeinsame Teiler von „a“ und „b“ ein Teiler des größten gemeinsamen Teilers von „a“ und „b“.
- Sehen wir uns ein Beispiel an, wie man den größten gemeinsamen Teiler, ggT, der folgenden Zahlen berechnet:
- 1.260 = 22 × 32
- 3.024 = 24 × 32 × 7
- 5.544 = 23 × 32 × 7 × 11
- ggT (1.260, 3.024, 5.544) = 22 × 32 = 252
- Und noch ein Beispiel:
- 900 = 22 × 32 × 52
- 270 = 2 × 33 × 5
- 210 = 2 × 3 × 5 × 7
- ggT (900, 270, 210) = 2 × 3 × 5 = 30
- Und noch ein Beispiel:
- 90 = 2 × 32 × 5
- 27 = 33
- 22 = 2 × 11
- ggT (90, 27, 22) = 1 - Die drei Zahlen haben keine gemeinsamen Primfaktoren, sie sind teilerfremd