30.311: Berechnen Sie die Teiler der Zahl (echte, unechte Teiler und die Primfaktoren)
Die Teiler der Zahl 30.311
30.311 ist eine zusammengesetzte Zahl und kann in Primfaktoren zerlegt werden. Was sind also alle Teiler der Zahl 30.311?
Ein Teiler der Zahl 30.311 ist eine Zahl B, die, wenn sie mit einer anderen Zahl C multipliziert wird, die gegebene Zahl 30.311 ergibt:
30.311 = B × C. Beispiel: 60 = 2 × 30.
Sowohl B als auch C sind Teiler von 30.311.
So finden Sie alle Teiler der Zahl 30.311:
1) Zerlegen Sie die Zahl in die Primfaktoren
2) Dann multiplizieren Sie diese Primfaktoren in all ihren einzigartigen Kombinationen, die zu unterschiedlichen Ergebnissen führen.
1) Primfaktorzerlegung:
Die Primfaktorzerlegung der Zahl 30.311 = die Teilung der Zahl 30.311 in kleinere Zahlen, die Primzahlen sind. Die Zahl 30.311 ergibt sich aus der Multiplikation dieser Primzahlen.
30.311 = 17 × 1.783
30.311 ist keine Primzahl, sondern eine zusammengesetzte Zahl.
* Die natürlichen Zahlen, die nur durch sich selbst und 1 teilbar sind, heißen Primzahlen. Beispiele: 2, 3, 5, 7, 11, 13, 17. Eine Primzahl hat genau zwei Teiler: 1 und sich selbst.
* Eine zusammengesetzte Zahl ist eine natürliche Zahl, die mindestens einen anderen Teiler als 1 und sich selbst hat. Beispiele: 4, 6, 8, 9, 10, 12, 14.
2) Wie finde ich alle Teiler der Zahl?
Führen Sie alle verschiedenen Kombinationen (die Multiplikationen) der Primfaktoren durch, die bei der Primfaktorzerlegung der Zahl vorkommen.
30.311 = 17 × 1.783
Fügen Sie auch 1 zur Liste der Teiler hinzu. Alle Zahlen sind durch 1 teilbar.
Alle Teiler sind unten aufgelistet - in aufsteigender Reihenfolge
Die Liste der Teiler:
weder Primzahl noch zusammengesetzte =
1
Primfaktor =
17
Primfaktor =
1.783
17 × 1.783 =
30.311
Die abschließende Antwort:
(runterscrollen)
30.311 hat 4 Teiler:
1; 17; 1.783 und 30.311
davon 2 Primfaktoren: 17 und 1.783
30.311 und 1 heißen unechte Teiler (auch Trivialteiler genannt), die anderen sind echte Teiler.
Eine schnelle Möglichkeit, die Teiler einer Zahl zu finden, besteht darin, sie in Primfaktoren zu zerlegen.
Erstellen Sie dann alle verschiedenen Kombinationen (Multiplikationen) der Primfaktoren und ihrer Exponenten, falls vorhanden.
Andere ähnliche Operationen zum Berechnen von Teilern:
Die letzten 5 Sätze berechneter Teiler: von einer Zahl oder die gemeinsamen Teiler von zwei Zahlen
Online-Rechner: Berechnen Sie alle Teiler der eingegebenen Zahlen
So berechnen Sie alle Teiler einer Zahl:
Zerlegen Sie die Zahl in Primfaktoren. Dann multiplizieren Sie diese Primfaktoren, indem Sie alle möglichen Kombinationen zwischen ihnen bilden.
Um die gemeinsamen Teiler zweier Zahlen zu berechnen:
Die gemeinsamen Teiler zweier Zahlen sind alle Teiler des größten gemeinsamen Teilers, ggT.
Zerlegen Sie den größten gemeinsamen Teiler in Primfaktoren. Dann multiplizieren Sie diese Primfaktoren, indem Sie alle möglichen Kombinationen zwischen ihnen bilden.
Theorie: Teiler, gemeinsame Teiler, der größte gemeinsame Teiler (ggT)
- Wenn die Zahl „t“ ein Teiler der Zahl „a“ ist, dann werden wir bei der Primfaktorzerlegung von „t“ nur auf Primfaktoren stoßen, die auch in der Primfaktorzerlegung von „a“ vorkommen.
- Wenn Exponenten beteiligt sind, ist der maximale Wert eines Exponenten für jede Basis einer Potenz, die in der Primfaktorzerlegung von „t“ gefunden wird, höchstens gleich dem Exponenten derselben Basis, die in der Primfaktorzerlegung von „a“ enthalten ist.
- Hinweis: 23 = 2 × 2 × 2 = 8. 2 heißt Basis und 3 ist Exponent. Der Exponent zeigt an, wie oft die Basis mit sich selbst multipliziert wird. 23 ist die Potenz und 8 ist der Wert der Potenz. Wir sagen: 2 hoch 3.
- Zum Beispiel ist 12 ein Teiler von 120 – der Rest ist Null, wenn 120 durch 12 geteilt wird.
- Schauen wir uns die Primfaktorzerlegung beider Zahlen an und beachten Sie die Basen und die Exponenten, die bei der Primfaktorzerlegung beider Zahlen vorkommen:
- 12 = 2 × 2 × 3 = 22 × 3
- 120 = 2 × 2 × 2 × 3 × 5 = 23 × 3 × 5
- 120 enthält alle Primfaktoren von 12, und alle Exponenten ihrer Basen sind höher als die von 12.
- Wenn „t“ ein gemeinsamer Teiler von „a“ und „b“ ist, dann enthält die Primfaktorzerlegung von „t“ nur die gemeinsamen Primfaktoren, die an den Primfaktorzerlegungen von „a“ und „b“ beteiligt sind.
- Wenn Exponenten beteiligt sind, ist der maximale Wert eines Exponenten für jede Basis einer Potenz, die in der Primfaktorzerlegung von „t“ vorkommt, höchstens gleich dem Minimum der Exponenten derselben Basis, die in der Primfaktorzerlegung von auftritt Zahlen „a“ und „b“.
- Zum Beispiel ist 12 der gemeinsame Teiler von 48 und 360.
- Der Rest ist Null, wenn entweder 48 durch 12 oder 360 durch 12 dividiert wird.
- Hier sind die Primfaktorzerlegungen der drei Zahlen 12, 48 und 360:
- 12 = 22 × 3
- 48 = 24 × 3
- 360 = 23 × 32 × 5
- Bitte beachten Sie, dass 48 und 360 mehr Teiler haben: 2, 3, 4, 6, 8, 12, 24. Unter ihnen ist 24 der größte gemeinsame Teiler, ggT, von 48 und 360.
- Der größte gemeinsame Teiler, ggT, zweier Zahlen, „a“ und „b“, ist das Produkt aller gemeinsamen Primfaktoren, die an der Primfaktorzerlegung von „a“ und „b“ durch die niedrigsten Potenzen beteiligt sind.
- Basierend auf dieser Regel wird der größte gemeinsame Teiler, ggT, mehrerer Zahlen berechnet, wie im Beispiel unten gezeigt...
- ggT (1.260; 3.024; 5.544) = ?
- 1.260 = 22 × 32
- 3.024 = 24 × 32 × 7
- 5.544 = 23 × 32 × 7 × 11
- Die gemeinsamen Primfaktoren sind:
- 2 - sein niedrigster Exponent ist: min.(2; 3; 4) = 2
- 3 - sein niedrigster Exponent ist: min.(2; 2; 2) = 2
- ggT (1.260; 3.024; 5.544) = 22 × 32 = 252
- Teilerfremde Zahlen:
- Wenn zwei Zahlen „a“ und „b“ keine anderen gemeinsamen Teiler als 1 haben, ggT (a; b) = 1, dann heißen die Zahlen „a“ und „b“ teilerfremd.
- Teiler der ggT
- Teiler von ggT: Wenn „a“ und „b“ nicht teilerfremd sind, dann ist jeder gemeinsame Teiler von „a“ und „b“ auch ein Teiler des größten gemeinsamen Teilers ggT von „a“ und „b“.
Einige Artikel über die Primzahlen