Berechnen und zählen Sie alle gemeinsamen Teiler von 1.237 und 1.679. Online-Rechner

Die gemeinsamen Teiler der Zahlen 1.237 und 1.679?

Die gemeinsamen Teiler der Zahlen 1.237 und 1.679 sind alle Teiler ihres 'größten gemeinsamen Teilers', ggT


Berechnen Sie den größten gemeinsamen Teiler.
Befolgen Sie die beiden folgenden Schritte.

1. Führen Sie die Primfaktorzerlegung der beiden Zahlen durch:

Die Primfaktorzerlegung einer Zahl N = die Teilung der Zahl N in kleinere Zahlen, die Primzahlen sind. Die Zahl N ergibt sich aus der Multiplikation dieser Primzahlen.


1.237 ist eine Primzahl und kann nicht in andere Primfaktoren zerlegt werden.


1.679 = 23 × 73
1.679 ist keine Primzahl, sondern eine zusammengesetzte Zahl.



* Die natürlichen Zahlen, die nur durch sich selbst und 1 teilbar sind, heißen Primzahlen. Eine Primzahl hat genau zwei Teiler: 1 und sich selbst.
* Eine zusammengesetzte Zahl ist eine natürliche Zahl, die mindestens einen anderen Teiler als 1 und sich selbst hat.



2. Berechnen Sie den größten gemeinsamen Teiler, ggT:

Multiplizieren Sie alle gemeinsamen Primfaktoren mit ihren kleineren Exponenten.
Aber die beiden Zahlen haben keine gemeinsamen Primfaktoren.


ggT (1.237; 1.679) = 1
Teilerfremde Zahlen (relativ prim);




1 ist nur durch sich selbst teilbar. Die Zahl 1 hat nur einen Teiler: 1.

1.237 und 1.679 haben 1 gemeinsamen Teiler:

weder Primzahl noch zusammengesetzte = 1

1.237 und 1.679 haben 1 gemeinsamen Teiler: 1
Teilerfremde Zahlen (relativ prim)

Theorie: Teiler, gemeinsame Teiler, der größte gemeinsame Teiler (ggT)

  • Wenn die Zahl „t“ ein Teiler der Zahl „a“ ist, dann werden wir bei der Primfaktorzerlegung von „t“ nur auf Primfaktoren stoßen, die auch in der Primfaktorzerlegung von „a“ vorkommen.
  • Wenn Exponenten beteiligt sind, ist der maximale Wert eines Exponenten für jede Basis einer Potenz, die in der Primfaktorzerlegung von „t“ gefunden wird, höchstens gleich dem Exponenten derselben Basis, die in der Primfaktorzerlegung von „a“ enthalten ist.
  • Hinweis: 23 = 2 × 2 × 2 = 8. 2 heißt Basis und 3 ist Exponent. Der Exponent zeigt an, wie oft die Basis mit sich selbst multipliziert wird. 23 ist die Potenz und 8 ist der Wert der Potenz. Wir sagen: 2 hoch 3.
  • Zum Beispiel ist 12 ein Teiler von 120 – der Rest ist Null, wenn 120 durch 12 geteilt wird.
  • Schauen wir uns die Primfaktorzerlegung beider Zahlen an und beachten Sie die Basen und die Exponenten, die bei der Primfaktorzerlegung beider Zahlen vorkommen:
  • 12 = 2 × 2 × 3 = 22 × 3
  • 120 = 2 × 2 × 2 × 3 × 5 = 23 × 3 × 5
  • 120 enthält alle Primfaktoren von 12, und alle Exponenten ihrer Basen sind höher als die von 12.
  • Wenn „t“ ein gemeinsamer Teiler von „a“ und „b“ ist, dann enthält die Primfaktorzerlegung von „t“ nur die gemeinsamen Primfaktoren, die an den Primfaktorzerlegungen von „a“ und „b“ beteiligt sind.
  • Wenn Exponenten beteiligt sind, ist der maximale Wert eines Exponenten für jede Basis einer Potenz, die in der Primfaktorzerlegung von „t“ vorkommt, höchstens gleich dem Minimum der Exponenten derselben Basis, die in der Primfaktorzerlegung von auftritt Zahlen „a“ und „b“.
  • Zum Beispiel ist 12 der gemeinsame Teiler von 48 und 360.
  • Der Rest ist Null, wenn entweder 48 durch 12 oder 360 durch 12 dividiert wird.
  • Hier sind die Primfaktorzerlegungen der drei Zahlen 12, 48 und 360:
  • 12 = 22 × 3
  • 48 = 24 × 3
  • 360 = 23 × 32 × 5
  • Bitte beachten Sie, dass 48 und 360 mehr Teiler haben: 2, 3, 4, 6, 8, 12, 24. Unter ihnen ist 24 der größte gemeinsame Teiler, ggT, von 48 und 360.
  • Der größte gemeinsame Teiler, ggT, zweier Zahlen, „a“ und „b“, ist das Produkt aller gemeinsamen Primfaktoren, die an der Primfaktorzerlegung von „a“ und „b“ durch die niedrigsten Potenzen beteiligt sind.
  • Basierend auf dieser Regel wird der größte gemeinsame Teiler, ggT, mehrerer Zahlen berechnet, wie im Beispiel unten gezeigt...
  • ggT (1.260; 3.024; 5.544) = ?
  • 1.260 = 22 × 32
  • 3.024 = 24 × 32 × 7
  • 5.544 = 23 × 32 × 7 × 11
  • Die gemeinsamen Primfaktoren sind:
  • 2 - sein niedrigster Exponent ist: min.(2; 3; 4) = 2
  • 3 - sein niedrigster Exponent ist: min.(2; 2; 2) = 2
  • ggT (1.260; 3.024; 5.544) = 22 × 32 = 252
  • Teilerfremde Zahlen:
  • Wenn zwei Zahlen „a“ und „b“ keine anderen gemeinsamen Teiler als 1 haben, ggT (a; b) = 1, dann heißen die Zahlen „a“ und „b“ teilerfremd.
  • Teiler der ggT
  • Teiler von ggT: Wenn „a“ und „b“ nicht teilerfremd sind, dann ist jeder gemeinsame Teiler von „a“ und „b“ auch ein Teiler des größten gemeinsamen Teilers ggT von „a“ und „b“.