Wie kürze ich den Bruch 1/128 vollständig auf seine Grunddarstellung (kleinstmöglicher Zähler und Nenner)? Schreibe das Ergebnis als echten Bruch, als Dezimalzahl und als Prozentsatz

Kürzen Sie den Bruch: 1/128

Der Bruch 1/128 kann nicht kürzer gemacht werden

Sie ist bereits vollständig auf ihre Grunddarstellung gekürzt (sie hat den kleinstmöglichen Zähler und Nenner).


1/128 ist ein echter Bruch.


Echter Bruch - der Zähler ist kleiner als der Nenner.


Schreiben Sie den Bruch um:

Als Dezimalzahl:

Teile den Zähler des Bruchs durch seinen Nenner.

1/128 =


1 : 128 =


0,0078125


0,01


Als Prozentsatz:

Multipliziere den Wert des Bruchs mit dem Bruch 100/100


100/100 = 100 : 100 = 100% = 1

Multiplizieren Sie eine Zahl mit dem Bruch 100/100,
... und ihr Wert ändert sich nicht.


0,0078125 =


0,0078125 × 100/100 =


0,78125/100 =


0,78125%


0,78%


Die endgültige Antwort:
:: Auf drei Arten geschrieben ::

Als echter Bruch
(der Zähler ist kleiner als der Nenner):
1/128 = 1/128

Als Dezimalzahl:
1/128 = 0,00781250,01

Als Prozentsatz:
1/128 = 0,78125%0,78%

Online-Rechner: Brüche vollständig auf ihre Grunddarstellung kürzen

So kürzen Sie Brüche vollständig auf ihre Grunddarstellung:

Teilen Sie Zähler und Nenner durch ihren größten gemeinsamen Teiler, ggT.

Ergebnis geschrieben als echter oder als unechter Bruch, gemischte Zahl, Dezimalzahl oder Ganzzahl, Prozentsatz

Die letzten 10 Brüche, die vollständig auf ihre Grunddarstellung gekürzt wurden

Kürzen von Brüchen auf ihre Grunddarstellung

Schritte, um einen Bruch zu kürzen, um ihn auf seine Grunddarstellung zu bringen, den kleinstmöglichen Zähler und Nenner:

  • 1) Führen Sie die Primfaktorzerlegung von Zähler und Nenner des Bruchs durch.
  • 2) Berechne den größten gemeinsamen Teiler von Zähler und Nenner des Bruchs.
  • 3) Teilen Sie sowohl den Zähler als auch den Nenner des Bruchs durch ihren größten gemeinsamen Teiler, ggT.
  • Der so erhaltene Bruch wird verkürzter Bruch oder vollständig auf seine Grunddarstellung gekürzter Bruch genannt.
  • Ein vollständig gekürzter Bruch darf nicht mehr gekürzt werden, er ist bereits in seiner einfachsten Form mit kleinstmöglichem Zähler und Nenner.

Beispiel: Kürzen Sie den Bruch 315/1.155 vollständig auf seine Grunddarstellung.

  • 1) Führen Sie die Primfaktorzerlegung von Zähler und Nenner des Bruchs durch.

  • Der Zähler der Brüche ist 315, und seine Primfaktorisierung ist:
    315 = 3 × 3 × 5 × 7 = 32 × 5 × 7
  • Der Nenner des Bruchs ist 1.155 und seine Primfaktorzerlegung ist:
    1.155 = 3 × 5 × 7 × 11.
  • 2) Berechne den größten gemeinsamen Teiler von Zähler und Nenner des Bruchs.

  • Der größte gemeinsame Teiler der beiden Zahlen, des Zählers und des Nenners, (315 und 1.155), wird berechnet, indem alle ihre gemeinsamen Primfaktoren mit den niedrigsten Potenzen multipliziert werden:
  • ggT (315; 1.155) = (32 × 5 × 7; 3 × 5 × 7 × 11) = 3 × 5 × 7 = 105
  • 3) Teilen Sie sowohl den Zähler als auch den Nenner des Bruchs durch ihren größten gemeinsamen Teiler, ggT.

  • Der Zähler und der Nenner des Bruchs werden durch ihren größten gemeinsamen Teiler dividiert:
  • 315/1.155 =
    (32 × 5 × 7)/(3 × 5 × 7 × 11) =
    ((32 × 5 × 7) : (3 × 5 × 7)) / ((3 × 5 × 7 × 11) : (3 × 5 × 7)) =
    3/11
  • Der so erhaltene Bruch wird als vollständig auf seine Grunddarstellung verkürzter Bruch bezeichnet - einer mit dem kleinstmöglichen Zähler und Nenner.

Warum Brüche kürzen?

  • Bei Operationen mit Brüchen müssen wir diese oft auf den gleichen Nenner bringen, zum Beispiel beim Addieren, Subtrahieren oder Vergleichen.
  • Manchmal sind sowohl die Zähler als auch die Nenner dieser Brüche große Zahlen, und Berechnungen mit solchen Zahlen können schwierig sein.
  • Durch das Kürzen eines Bruchs werden sowohl der Zähler als auch der Nenner auf kleinere Werte reduziert - viel einfacher zu handhaben und so der Gesamtaufwand zu reduzieren.

Lesen Sie den gesamten Artikel ⇒ Brüche vollständig auf ihre Grunddarstellung kürzen: Schritte und Beispiele