Sind die beiden Zahlen 999.999.999.967 und 8.309 teilerfremde Zahlen (relativ prim)? Überprüfen Sie, ob ihr größter gemeinsamer Teiler, ggT, gleich 1 ist
Sind die Zahlen 999.999.999.967 und 8.309 teilerfremd?
999.999.999.967 und 8.309 sind Teilerfremde... wenn:
Wenn es keine andere Zahl als 1 gibt, die beide Zahlen ohne Rest teilt. Oder...
Oder mit anderen Worten – wenn ihr größter gemeinsamer Teiler, ggT, 1 ist.
Berechnen Sie den größten gemeinsamen Teiler, ggT, der Zahlen
Methode 1. Die Primfaktorzerlegung:
Die Primfaktorzerlegung einer Zahl N = ist die Operation der Teilung der Zahl N in kleinere Zahlen - diese kleineren Zahlen sind Primzahlen. Die Zahl N ergibt sich aus der Multiplikation dieser Primzahlen.
999.999.999.967 = 32.983 × 30.318.649
999.999.999.967 ist keine Primzahl, ist Zusammengesetzte Zahl.
8.309 = 7 × 1.187
8.309 ist keine Primzahl, ist Zusammengesetzte Zahl.
Die Zahlen, die nur durch sich selbst und 1 teilbar sind, heißen Primzahlen. Eine Primzahl hat nur zwei Teiler: 1 und sich selbst.
Eine zusammengesetzte Zahl ist eine natürliche Zahl, die mindestens einen anderen Teiler als 1 und sich selbst hat.
Berechnen Sie den größten gemeinsamen Teiler, ggT:
Multiplizieren Sie alle gemeinsamen Primfaktoren der beiden Zahlen mit ihren kleineren Exponenten.
Aber die Zahlen haben keine gemeinsamen Primfaktoren.
ggT (999.999.999.967; 8.309) = 1
Teilerfremde Zahlen (relativ prim)
Teilerfremde Zahlen (relativ prim) (999.999.999.967; 8.309)? Ja.
Die Zahlen haben keine gemeinsamen Primfaktoren.
ggT (8.309; 999.999.999.967) = 1
Scrollen Sie nach unten für die 2. Methode...
Methode 2. Euklidischer Algorithmus:
Dieser Algorithmus beinhaltet den Prozess der Division von Zahlen und der Berechnung der Reste.
'a' und 'b' sind die beiden natürlichen Zahlen, 'a' >= 'b'.
Teilen Sie 'a' durch 'b' und erhalten Sie den Rest der Operation, 'r'.
Wenn 'r' = 0 ist, STOP. 'b' = der ggT von 'a' und 'b'.
Sonst: Ersetzen Sie ('a' durch 'b') und ('b' durch 'r'). Kehren Sie zum obigen Schritt der Teilung zurück.
1. Operation: die größte Zahl durch die kleinste Zahl:
999.999.999.967 : 8.309 = 120.351.426 + 1.333
2. Operation: Teilen Sie die kleinere Zahl durch den Rest aus der obigen Operation:
8.309 : 1.333 = 6 + 311
3. Operation: Teilen Sie den Rest der 1. Operation durch den Rest der 2. Operation:
1.333 : 311 = 4 + 89
4. Operation: Teilen Sie den Rest der 2. Operation durch den Rest der 3. Operation:
311 : 89 = 3 + 44
5. Operation: Teilen Sie den Rest der 3. Operation durch den Rest der 4. Operation:
89 : 44 = 2 + 1
6. Operation: Teilen Sie den Rest der 4. Operation durch den Rest der 5. Operation:
44 : 1 = 44 + 0
Bei diesem Schritt ist der Rest Null, also müssen wir aufhören:
1 ist die Zahl, nach der wir gesucht haben - das ist der letzte Rest, der von Null verschieden ist.
Dies ist der größte gemeinsame Teiler.
ggT (999.999.999.967; 8.309) = 1
Teilerfremde Zahlen (relativ prim) (999.999.999.967; 8.309)? Ja.
ggT (8.309; 999.999.999.967) = 1
Andere ähnliche Operationen mit teilerfremden Zahlen:
Online-Rechner: Sind die beiden Zahlen teilerfremd?
Zwei natürliche Zahlen sind teilerfremd – wenn es keine Zahl gibt, die beide Zahlen ohne Rest teilt, das heißt, wenn ihr größter gemeinsamer Teiler, ggT, 1 ist.
Zwei natürliche Zahlen sind es nicht teilerfremd - wenn es mindestens eine Zahl gibt, die die beiden Zahlen ohne Rest teilt, das heißt, wenn ihr größter gemeinsamer Teiler, ggT, nicht 1 ist.