Sind die beiden Zahlen 25 und 6.825 teilerfremde Zahlen (relativ prim)? Überprüfen Sie, ob ihr größter gemeinsamer Teiler, ggT, gleich 1 ist

Sind die Zahlen 25 und 6.825 teilerfremd?

25 und 6.825 sind nicht teilerfremd... wenn:

Wenn es mindestens eine andere Zahl als 1 gibt, die die beiden Zahlen ohne Rest teilt. Oder...

Oder mit anderen Worten – wenn ihr größter gemeinsamer Teiler, ggT, nicht 1 ist.


Berechnen Sie den größten gemeinsamen Teiler, ggT, der Zahlen

Methode 1. Die Teilbarkeit der Zahlen:

Teilen Sie die größere Zahl durch die kleinere.


Beim Teilen der beiden Zahlen bleibt kein Rest:


6.825 : 25 = 273 + 0


⇒ 6.825 = 25 × 273


⇒ 6.825 ist durch 25 teilbar


⇒ 25 ist ein Teiler von 6.825


Folglich, ggT (25; 6.825) = 25 ≠ 1


Teilerfremde Zahlen (relativ prim) (25; 6.825)? Nein.
ggT (25; 6.825) = 25 ≠ 1
Scrollen Sie nach unten für die 2. Methode...

Methode 2. Die Primfaktorzerlegung:

Die Primfaktorzerlegung einer Zahl N = ist die Operation der Teilung der Zahl N in kleinere Zahlen - diese kleineren Zahlen sind Primzahlen. Die Zahl N ergibt sich aus der Multiplikation dieser Primzahlen.


25 = 52
25 ist keine Primzahl, ist Zusammengesetzte Zahl.


6.825 = 3 × 52 × 7 × 13
6.825 ist keine Primzahl, ist Zusammengesetzte Zahl.


Die Zahlen, die nur durch sich selbst und 1 teilbar sind, heißen Primzahlen. Eine Primzahl hat nur zwei Teiler: 1 und sich selbst.


Eine zusammengesetzte Zahl ist eine natürliche Zahl, die mindestens einen anderen Teiler als 1 und sich selbst hat.

» Prüfen Sie, ob eine Zahl eine Primzahl ist oder nicht. Die Primfaktorzerlegung zusammengesetzter Zahlen



Berechnen Sie den größten gemeinsamen Teiler, ggT:

Multiplizieren Sie alle gemeinsamen Primfaktoren der beiden Zahlen mit ihren kleineren Exponenten.

ggT (25; 6.825) = 52 = 25 ≠ 1



Teilerfremde Zahlen (relativ prim) (25; 6.825)? Nein.
6.825 hat alle Primfaktoren der Zahl 25.
ggT (25; 6.825) = 25 ≠ 1

Online-Rechner: Sind die beiden Zahlen teilerfremd?

Zwei natürliche Zahlen sind teilerfremd – wenn es keine Zahl gibt, die beide Zahlen ohne Rest teilt, das heißt, wenn ihr größter gemeinsamer Teiler, ggT, 1 ist.

Zwei natürliche Zahlen sind es nicht teilerfremd - wenn es mindestens eine Zahl gibt, die die beiden Zahlen ohne Rest teilt, das heißt, wenn ihr größter gemeinsamer Teiler, ggT, nicht 1 ist.

Teilerfremdheit oder nicht (relativ prim oder nicht)? Die letzten 10 überprüften Zahlenpaare

Teilerfremde Zahlen

  • Die Zahlen „a“ und „b“ heißen Teilerfremde, wenn die einzige positive ganze Zahl, die beide teilt, 1 ist.
  • Die teilerfremden Zahlen sind Paare von (mindestens zwei) Zahlen, die keinen anderen gemeinsamen Teiler als 1 haben.
  • Wenn der einzige gemeinsame Teiler 1 ist, dann ist dies auch gleichbedeutend damit, dass ihr größter gemeinsamer Teiler 1 ist.
  • Beispiele für Paare von teilerfremden Zahlen:
  • Die teilerfremden Zahlen sind nicht unbedingt Primzahlen, zum Beispiel 4 und 9 - diese beiden Zahlen sind keine Primzahlen, sie sind zusammengesetzte Zahlen, da 4 = 2 × 2 = 22 und 9 = 3 × 3 = 32. Aber der gcf (4, 9) = 1 , sie sind also teilerfremd.
  • Manchmal sind die teilerfremden Zahlen in einem Paar selbst Primzahlen, zum Beispiel: (3 und 5) oder (7 und 11), (13 und 23).
  • In anderen Fällen können die Zahlen, die zueinander Primzahlen sind, auch Primzahlen sein oder nicht, zum Beispiel (5 und 6), (7 und 12), (15 und 23).
  • Beispiele für nicht teilerfremde Zahlenpaare:
  • 16 und 24 sind nicht teilerfremd, da sie beide durch 1, 2, 4 und 8 teilbar sind (1, 2, 4 und 8 sind ihre gemeinsamen Teiler).
  • 6 und 10 sind nicht teilerfremd, da sie beide durch 1 und 2 teilbar sind.
  • Einige Eigenschaften der teilerfremden Zahlen:
  • Der größte gemeinsame Teiler zweier teilerfremder Zahlen ist immer 1.
  • Das kleinste gemeinsame Vielfache, LCM, von zwei Teilerfremden ist immer ihr Produkt: LCM (a, b) = a × b.
  • Die Zahlen 1 und -1 sind die einzigen ganzen Zahlen, die teilerfremd zu jeder ganzen Zahl sind, zum Beispiel (1 und 2), (1 und 3), (1 und 4), (1 und 5), (1 und 6) und so weiter , sind Paare von teilerfremden Zahlen, da ihr größter gemeinsamer Teiler 1 ist.
  • Die Zahlen 1 und -1 sind die einzigen ganzen Zahlen, die teilerfremd zu 0 sind.
  • Zwei beliebige Primzahlen sind immer teilerfremd, zum Beispiel (2 und 3), (3 und 5), (5 und 7) und so weiter.
  • Zwei beliebige aufeinanderfolgende Zahlen sind teilerfremd, zum Beispiel (1 und 2), (2 und 3), (3 und 4), (4 und 5), (5 und 6), (6 und 7), (7 und 8) , (8 und 9), (9 und 10) und so weiter.
  • Die Summe zweier teilerfremder Zahlen a + b ist immer teilerfremd mit ihrem Produkt a × b. Zum Beispiel sind 7 und 10 teilerfremde Zahlen, 7 + 10 = 17 ist teilerfremd mit 7 × 10 = 70. Ein weiteres Beispiel: 9 und 11 sind teilerfremd, und ihre Summe 9 + 11 = 20 ist teilerfremd zu ihrem Produkt 9 × 11 = 99.
  • Ein schneller Weg, um festzustellen, ob zwei Zahlen teilerfremd sind, bietet der Euklidische Algorithmus: Der euklidische Algorithmus