Sind die beiden Zahlen 2.190 und 156 teilerfremde Zahlen (relativ prim)? Überprüfen Sie, ob ihr größter gemeinsamer Teiler, ggT, gleich 1 ist
Sind die Zahlen 2.190 und 156 teilerfremd?
2.190 und 156 sind nicht teilerfremd... wenn:
Wenn es mindestens eine andere Zahl als 1 gibt, die die beiden Zahlen ohne Rest teilt. Oder...
Oder mit anderen Worten – wenn ihr größter gemeinsamer Teiler, ggT, nicht 1 ist.
Berechnen Sie den größten gemeinsamen Teiler, ggT, der Zahlen
Methode 1. Die Primfaktorzerlegung:
Die Primfaktorzerlegung einer Zahl N = ist die Operation der Teilung der Zahl N in kleinere Zahlen - diese kleineren Zahlen sind Primzahlen. Die Zahl N ergibt sich aus der Multiplikation dieser Primzahlen.
2.190 = 2 × 3 × 5 × 73
2.190 ist keine Primzahl, ist Zusammengesetzte Zahl.
156 = 22 × 3 × 13
156 ist keine Primzahl, ist Zusammengesetzte Zahl.
Die Zahlen, die nur durch sich selbst und 1 teilbar sind, heißen Primzahlen. Eine Primzahl hat nur zwei Teiler: 1 und sich selbst.
Eine zusammengesetzte Zahl ist eine natürliche Zahl, die mindestens einen anderen Teiler als 1 und sich selbst hat.
Berechnen Sie den größten gemeinsamen Teiler, ggT:
Multiplizieren Sie alle gemeinsamen Primfaktoren der beiden Zahlen mit ihren kleineren Exponenten.
ggT (2.190; 156) = 2 × 3 = 6 ≠ 1
Teilerfremde Zahlen (relativ prim) (2.190; 156)? Nein.
Die beiden Zahlen haben gemeinsame Primfaktoren.
ggT (156; 2.190) = 6 ≠ 1
Scrollen Sie nach unten für die 2. Methode...
Methode 2. Euklidischer Algorithmus:
Dieser Algorithmus beinhaltet den Prozess der Division von Zahlen und der Berechnung der Reste.
'a' und 'b' sind die beiden natürlichen Zahlen, 'a' >= 'b'.
Teilen Sie 'a' durch 'b' und erhalten Sie den Rest der Operation, 'r'.
Wenn 'r' = 0 ist, STOP. 'b' = der ggT von 'a' und 'b'.
Sonst: Ersetzen Sie ('a' durch 'b') und ('b' durch 'r'). Kehren Sie zum obigen Schritt der Teilung zurück.
1. Operation: die größte Zahl durch die kleinste Zahl:
2.190 : 156 = 14 + 6
2. Operation: Teilen Sie die kleinere Zahl durch den Rest aus der obigen Operation:
156 : 6 = 26 + 0
Bei diesem Schritt ist der Rest Null, also müssen wir aufhören:
6 ist die Zahl, nach der wir gesucht haben - das ist der letzte Rest, der von Null verschieden ist.
Dies ist der größte gemeinsame Teiler.
ggT (2.190; 156) = 6 ≠ 1
Teilerfremde Zahlen (relativ prim) (2.190; 156)? Nein.
ggT (156; 2.190) = 6 ≠ 1
Andere ähnliche Operationen mit teilerfremden Zahlen:
Online-Rechner: Sind die beiden Zahlen teilerfremd?
Zwei natürliche Zahlen sind teilerfremd – wenn es keine Zahl gibt, die beide Zahlen ohne Rest teilt, das heißt, wenn ihr größter gemeinsamer Teiler, ggT, 1 ist.
Zwei natürliche Zahlen sind es nicht teilerfremd - wenn es mindestens eine Zahl gibt, die die beiden Zahlen ohne Rest teilt, das heißt, wenn ihr größter gemeinsamer Teiler, ggT, nicht 1 ist.