2.003 und 9.835 sind Teilerfremde – wenn es keine andere Zahl als 1 gibt, die beide Zahlen ohne Rest teilt – das heißt – wenn ihr größter gemeinsamer Teiler, ggT, 1 ist.
Berechnen Sie den größten gemeinsamen Teiler, ggT, der Zahlen
Methode 1. Die Primfaktorzerlegung:
Die Primfaktorzerlegung einer Zahl N = ist die Operation der Teilung der Zahl N in kleinere Zahlen - diese kleineren Zahlen sind Primzahlen. Die Zahl N ergibt sich aus der Multiplikation dieser Primzahlen.
2.003 ist Primzahl, kann nicht in andere Primfaktoren zerlegt werden.
9.835 = 5 × 7 × 281
9.835 ist keine Primzahl, ist Zusammengesetzte Zahl.
Die Zahlen, die nur durch sich selbst und 1 teilbar sind, heißen Primzahlen. Eine Primzahl hat nur zwei Teiler: 1 und sich selbst.
Eine zusammengesetzte Zahl ist eine natürliche Zahl, die mindestens einen anderen Teiler als 1 und sich selbst hat.
Berechnen Sie den größten gemeinsamen Teiler, ggT:
Multiplizieren Sie alle gemeinsamen Primfaktoren der beiden Zahlen mit ihren kleineren Exponenten.
Aber die Zahlen haben keine gemeinsamen Primfaktoren.
ggT (2.003; 9.835) = 1
Teilerfremde Zahlen (relativ prim)
Teilerfremde Zahlen (relativ prim) (2.003; 9.835)? Ja.
Die Zahlen haben keine gemeinsamen Primfaktoren.
ggT (2.003; 9.835) = 1
Methode 2. Euklidischer Algorithmus:
Dieser Algorithmus beinhaltet den Prozess der Division von Zahlen und der Berechnung der Reste.
'a' und 'b' sind die beiden natürlichen Zahlen, 'a' >= 'b'.
Teilen Sie 'a' durch 'b' und erhalten Sie den Rest der Operation, 'r'.
Wenn 'r' = 0 ist, STOP. 'b' = der ggT von 'a' und 'b'.
Sonst: Ersetzen Sie ('a' durch 'b') und ('b' durch 'r'). Kehren Sie zum obigen Schritt der Teilung zurück.
1. Operation: die größte Zahl durch die kleinste Zahl:
9.835 : 2.003 = 4 + 1.823
2. Operation: Teilen Sie die kleinere Zahl durch den Rest aus der obigen Operation:
2.003 : 1.823 = 1 + 180
3. Operation: Teilen Sie den Rest der 1. Operation durch den Rest der 2. Operation:
1.823 : 180 = 10 + 23
4. Operation: Teilen Sie den Rest der 2. Operation durch den Rest der 3. Operation:
180 : 23 = 7 + 19
5. Operation: Teilen Sie den Rest der 3. Operation durch den Rest der 4. Operation:
23 : 19 = 1 + 4
6. Operation: Teilen Sie den Rest der 4. Operation durch den Rest der 5. Operation:
19 : 4 = 4 + 3
7. Operation: Teilen Sie den Rest der 5. Operation durch den Rest der 6. Operation:
4 : 3 = 1 + 1
8. Operation: Teilen Sie den Rest der 6. Operation durch den Rest der 7. Operation:
3 : 1 = 3 + 0
Bei diesem Schritt ist der Rest Null, also müssen wir aufhören:
1 ist die Zahl, nach der wir gesucht haben - das ist der letzte Rest, der von Null verschieden ist.
Dies ist der größte gemeinsame Teiler.
ggT (2.003; 9.835) = 1
Teilerfremde Zahlen (relativ prim) (2.003; 9.835)? Ja.
ggT (2.003; 9.835) = 1
Die abschließende Antwort:
(runterscrollen)